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Circular modes, beam adapters, and their applications in beam optics
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In the optics of charged particle beams, circular transverse modes can be introduced; they provide an
adequate basis for rotation-invariant transformations. A group of these transformations is shown to be identical
to a group of the canonical angular momentum preserving mappings. These mappings and the circular modes
are parametrized similar to the Courant-Snyder forms for the conventional uncoupled, or planar, case. The
planar-to-circular and reverse transformers~beam adapters! are introduced in terms of the circular and planar
modes; their implementation on the basis of skew quadrupole blocks is described. Various kinds of matching
for beams, adapters and solenoids are considered. Applications of the planar-to-circular, circular-to-planar and
circular-to-circular transformers are discussed. A range of applications includes round beams at the interaction
region of circular colliders, flat beams for linear colliders, relativistic electron cooling, and ionization cooling.

DOI: 10.1103/PhysRevE.66.016503 PACS number~s!: 29.27.Eg

I. INTRODUCTION

Linear beam optics normally employs transformations, which either do not couple vertical and horizontal deg
freedom, or the coupling is weak. In the canonical 4D phase space,

x[S X

YD[S x

px

y

py

D , ~1!

these uncoupled transformationsP are described by 4D block-diagonal matrices with independent 2D unimodular block
the vertical and horizontal subspaces. For these transformations, particle trajectories are conventionally described by
uncoupled, or planar, modes. In the Courant-Snyder form@1#, the four planar basis vectors can be arranged as columns
434 block-diagonal matrix:

V5S Abxcos~fx! Abxsin~fx! 0 0

2axcos~fx!2sin~fx!

Abx

2axsin~fx!1cos~fx!

Abx

0 0

0 0 Abycos~fy! Abysin~fy!

0 0
2aycos~fy!2sin~fy!

Aby

2aysin~fy!1cos~fy!

Aby

D . ~2!
e w
pa-

s

Any initial phase space vectorx can be expanded over th
basis~2!

x5Va ~3!

with its amplitudesa5(a1 ,a2 ,a3 ,a4)T. Due to the basis

*Email address: burov@fnal.gov
†On leave from Spin Physics Center, University of Michigan.
1063-651X/2002/66~1!/016503~13!/$20.00 66 0165
symplecticity, the amplitudesa can be considered as ne
canonical variables. Uncoupled mappings change basis
rametersax,y ,bx,y , andfx,y , while leaving the amplitudes
a constant. The actions and initial phasesJx,y ,xx,y in the 4D
phase spacex can be presented in terms of the amplitudea
as

a5~A2Jxsinxx ,A2Jxcosxx ,

A2Jysinxy ,A2Jycosxy!, ~4!
©2002 The American Physical Society03-1
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where the actions are given by the Courant-Snyder invari

Jx5~a1
21a2

2!/25gxx
2/21axxpx1bxpx

2/2,
~5!

Jy5~a3
21a4

2!/25gyy
2/21ayypy1bypy

2/2,

with gx,y5(11ax,y
2 )/bx,y .

The structure of the planar basis~2! is preserved only by
the uncoupled transformations; for general 4D symple
transformations the proper basis structure is more com
cated; various forms were presented in Refs.@3–5#.

For some specific coupled transformations, namely, ro
tion invariant, the basis reduces to a form which is as sim
as the planar one~2!; below this basis is referred to as ‘‘cir
cular.’’ As far as we know, the circular basis was first intr
duced in Ref.@5#; it is rederived here in Sec. III.

For charged particle beams, focusing by means of s
noids or round electrostatic lenses and bending by inden
51/2 dipoles gives a continuous, or local-invariant opti
i.e., such that mapping between any two places is~rotatio!
invariant. However, mapping between two specific pla
can be designed as rotation invariant even on a base of
noninvariant elements as quadrupoles and constant-field
poles@6#; the whole mapping in this case can be referred
as block invariant. Optical schemes with actual local
block invariance are discussed for muon transport@7#, circu-
lar colliders~see list of references in, e.g.@9#!, and relativis-
tic electron cooling@6#. An important property of rotation-
invariant mappings is that they preserve the canon
angular momentum~CAM!; this and inverse statements a
proven in the next section. For invariant transformations,
adequate basis is constructed from circular modes; this i
obvious for charged particle beams as it is for light. A sy
plectic circular basis, analogous to the Courant-Snyder
coupled form, is presented in Sec. III.

After both planar and circular polarized modes are int
duced, a problem of their mutual transformation can be c
sidered. When both bases are symplectic, they can
mapped onto each other; thus this transformation can alw
be done. Such an idea was originally proposed by one of
authors~Ya.D.! to reduce the beam-beam effects in circu
colliders; he found that an uncoupled beam state can
transformed into a round whirled state and back. He th
called these planar-circular transformers ‘‘beam adapte
@10#. If one of the emittances of the coming uncoupled be
can be neglected, then the outgoing beam would be
definite-sign spirality, CAM dominated state@6#, and its
transverse motion could be completely cancelled insid
matched solenoid. This effective elimination of transve
temperature of coming flat beam can be essential for rela
istic electron cooling@11,12#. A particular realization of the
adapting optics has been found in Ref.@13#. One more ap-
plication of the adapter was proposed in Ref.@14#: to get a
flat electron beam for a linear collider from a round bea
emitted by a magnetized cathode. In Ref.@15#, a general
requirement on the magnetized-to-flat mapping was
cussed; the properties of the involved quadrupole blo
were formulated in terms of the Courant-Snyder paramet
01650
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the emittance preservation for both the canonical emittan
was shown. Recently, the magnetized-to-flat beam trans
mation was demonstrated experimentally at Fermi
@16,17#. In the paper below, the beam adapters are consid
as planar-circular transformers, which gives a straightf
ward way to present all their features. Finally, various app
cations of the circular modes and beam adapters are
cussed.

II. ROTATION-INVARIANT TRANSFORMATIONS

A group of rotations in the transverse plane can be p
sented by matrices

R~u!5S cI sI

2sI cID , ~6!

with c5cosu, s5sinu andI is the 232 identity matrix. The
rotation invariance of a transformationT means thatT com-
mutes with the rotations:

RT2TR50. ~7!

This condition is equivalent to its particular case of an infi
tesimal rotation by an angledu,

R5I1Gdu, G5S 0 I

2I 0D , G 252I, ~8!

whereI and I are 434 and 232 identity matrices corre-
spondingly. Then, the invariance condition reduces to a co
mutation of the mappingT with the infinitesimal operatorG

GT2TG50. ~9!

The mapping symplecticity is conventionally expressed a

T TST5S, ~10!

where

S5S J 0

0 JD , J5S 0 1

21 0D , S 252I. ~11!

The matrixS is usually referred to as the symplectic unit,I
is the 434 identity matrix and the superscriptT stands for
the transposing.

It can be shown now that symplectic invariant transform
tions T preserve the canonical angular momentum~CAM!

M[xpy2ypx[
1

2
xTLx, ~12!

where
3-2
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L5S 0 J

2J 0D , J5S 0 1

21 0D , L 25I. ~13!

Note that the CAM matrixL is rotation invariant:

G•L2L•G50. ~14!

In terms of its matrixL, CAM preservation under the map
ping T can be expressed as

T TLT5L. ~15!

To prove that this is true when conditions~10! and ~9! are
provided, it is convenient to use the relation between
infinitesimal operatorG, the symplectic unit matrixS, and
the CAM matrixL:

SL5LS52G, ~16!

which is straightforward to prove. It means that the matric
S, L, andG form an algebra: any of their products retur
one of them. From Eqs.~14! and~16! the symplecticity ma-
trix can be presented as

S52LG. ~17!

Being substituted in the symplecticity condition~10!, after
the commutation~9!, it leads to the CAM preservation~15!.
Thus, the invariant transformations preserve the CAM.

Having shown that the mapping invariance leads to
CAM preservation, a reverse statement can be proven
well: if a symplectic mapping preserves the CAM of a
initial state, it is rotationally invariant. Indeed, with the m
trix T T expressed from the symplecticity condition~10! and
substituted in the CAM preservation~15!, it leads to what
can be seen as the invariance property~9! when Eq.~16! is
used. Thus, mapping invariance gives rise to CAM prese
tion and vice versa, so these properties are absolutely equ
lent.

A general form of the CAM-preserving matrices w
found by Pozdeev@18# and Perevedentsev@19#; in the rest of
this section we are following Perevedentsev. The invaria
condition ~9! applied to the mapping presented in a block
32 form

T5 S Txx Txy

Tyx Tyy
D ~18!

immediately yieldsTxx5Tyy andTxy52Tyx or

T5S A B

2B AD . ~19!

The symplecticity condition~10! applied to a matrix of such
a form ~19! results in

ATJ A1BTJB5J, ~20!

ATJ B2BTJ A50. ~21!
01650
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For arbitrary matrixA, it is true thatATJ A5uAuJ; thus, Eq.
~20! gives

uAu1uBu51. ~22!

The condition~21! presented as

J B A215~B A21!T J

yields

B5A3const. ~23!

It follows from Eqs.~22! and~23! that the matricesA andB
can be presented as

A5T cosu, B5T sinu, ~24!

whereT is an arbitrary 232 matrix with uTu51 andu is an
arbitrary parameter. Thus, it leads to a conclusion tha
34 matrices of a form

T5S T cosu T sinu

2T sinu T cosu D[R~u!S T 0

0 TD ~25!

present a group of symplectic rotation invariant mappin
identical to the CAM-preserving group of transformations

One more interesting transformation is a mirror reflectio

M5S I 0

0 2ID . ~26!

This symplectic transformation does not commute with ro
tions, so it is not rotation invariant and cannot be imp
mented by rotation-invariant optics. Combined with the r
tation invariant group, it leads to such mappings as

T25TM5R~u!S T 0

0 2TD ~27!

which invert a sign of the CAM, preserving the CAM abs
lute value and beam rotation symmetry. In Ref.@6# a gener-
alized Busch’s theorem was proven: if a rotation-invaria
laminar beam is linearly transformed into a rotation-invaria
beam again, then the absolute value of the CAM is preser
for any particle of this beam. TransformationsT ~25! andT2

~27! together form a group of CAM-value preserving ma
pings. Thus, according to this theorem, they cover all
linear symplectic transformations, which preserve beam
tation symmetry for any initial round beam state. Reflectio
like transformationsT2 can be implemented by means
two adapters, discussed in Secs. IV and V.

A parametrization of the 232 unimodular matrixT can
be taken in the conventional Courant-Snyder form, in ter
of its inputa1 ,b1 and outputa2 ,b2 parameters and a phas
advancem ~see, e.g.@2#!:
3-3
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T5S Ab2

b1
~cosm1a1sinm! Ab1b2sinm

2
11a1a2

Ab1b2

sinm1
a12a2

Ab1b2

cosm Ab1

b2
~cosm2a2sinm!

D , ~28!

where the subscript 1 of the Courant-Snyder parameters relates to an initial state, and 2 to a final state.

III. CIRCULAR BASIS

In this section, the eigenbasis of the rotation-invariant transformations is constructed. First, some heuristic ideas are
the construction of the matrix, comprised of four basis vectors. Then, free parameters of this form are taken to make t
symplectic. Finally, it is shown how the remaining free parameters are changed under the rotation-invariant transfor
~25!.

Rotation-invariant transformations preserve the CAM. The simplest vector with a nonzero CAM can be given as

u05~b,0,0,pt!
T ~29!

with an arbitrary offsetb and the tangential momentumpt . Fromu0, two orthogonal vectors can be constructed by rotatio

u15~b cosf1 ,2ptsinf1 ,bsinf1 ,ptcosf1!T,

u25~b sinf1 ,ptcosf1 ,2b cosf1 ,ptsinf1!T, ~30!

wheref1 is an arbitrary parameter. An additional pair of orthogonal vectors can be constructed from

ũ05~2b,0,0,pt!
T ~31!

in the same way:

u35~2b cosf2 ,ptsinf2 ,b sinf2 ,ptcosf2!T,

u45~2b sinf2 ,2ptcosf2 ,2b cosf2 ,ptsinf2!T. ~32!

The structure of the four vectors~30! and~32! is preserved by rotationsR, but it is not general enough to be preserved by
rotation-invariant transformations~25!. The reason is that these vectors contain only the tangential momentumpt having a zero

normal~radial! componentpn5(xpx1ypy)/Ax21y2, which is not general enough. With the normal momentumpn included,
the matrix of the vectorsU5(u1 ,u2 ,u3 ,u4) changes as follows:

U5S b cosf1 b sinf1 2b cosf2 2b sinf2

2ptsinf11pncosf1 ptcosf11pnsinf1 ptsinf22pncosf2 2ptcosf21pnsinf2

b sinf1 2b cosf1 b sinf2 2b cosf2

ptcosf11pnsinf1 ptsinf12pncosf1 ptcosf21pnsinf2 ptsinf22pncosf2

D . ~33!

To be a valid basis for the rotation-invariant transformations, it is necessary for the setU to be symplectic. It is straightforward
to see that the symplecticity condition~10! is satisfied for the matrixU if the tangential momentumpt is in a specific relation
with the offset:pt51/(2b). This enables the CAM to have only certain values for the basis vectors:M51/2 for the first pair
u1 andu2, andM521/2 for the second pairu3 andu4.

After the symplecticity of the set of vectors~33! is applied, the final remaining point is to find out how it is changed un
the invariant transformations~25!. Instead of the offsetb and the normal momentumpn , new parameters,b anda, are more
convenient to use:

b5Ab/2;pn52a/A2b. ~34!

The matrixU then becomes the following function of its parametersa,b,f1 ,f2 :
016503-4
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U[U~a,b,f1 ,f2!5
1

A2S Abcosf1 Absinf1 2Abcosf2 2Absinf2

2sinf12acosf1

Ab

cosf12asinf1

Ab

sinf21acosf2

Ab

2cosf21asinf2

Ab

Absinf1 2Abcosf1 Absinf2 2Abcosf2

cosf12asinf1

Ab

sinf11acosf1

Ab

cosf22asinf2

Ab

sinf21acosf2

Ab

D .

~35!
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This circular basis is almost identical to that introduced
Ref. @5#. The only difference is that the parametersb anda
in Eq. ~35! are by a factor of 2 smaller than Lebede
Bogacz’s parameters. This choice for normalization is u
here for a certain compatibility of the form~35! with the
rotation-invariant transformations as they are presented
Eq. ~28!. Indeed, the invariant transformationT ~25! param-
eterized by blockT ~28! can be applied to the set of circula
vectors U ~35!. Without any loss of generality, the inpu
Courant-Snyder parameters of the mapping can be mat
with the vectors:a15a;b15b. After that, the output vecto
is found as

Ũ[T U~a,b,f1 ,f2!5U~a2 ,b2 ,f11m2u,f21m1u!.
~36!

This result completes the basis construction for the rotat
invariant mappings. It shows that the structure of the sy
plectic set of vectorsU ~35! is preserved under these tran
formations; thus this set forms the eigenbasis of the rotat
invariant mappings. At this mapping, the vectors expa
~change theirb parameter!, acquire some normal momentu
~change theira parameter!, and turn~change their phase
f1 andf2). Note that vectors of the same spirality~sign of
the CAM! are turned by the same angles. Circular modes
beam optics were considered in Ref.@10# for the description
of round beams in the IP region of circular colliders. In
slightly different form than Eq.~35!, the circular modes were
derived in Ref.@5# as a particular case of the general 4
symplectic eigenvectors presented in that paper.

Having defined the circular Courant-Snyder parame
according to Eq.~36!, any phase space vectorx can be ex-
panded over this rotating basis:

x5U a. ~37!

In this presentation, the parameters of the circular basis
changed after the transformation, while the 4D vector of a
plitudesa5(a1 ,a2 ,a3 ,a4)T remains constant. Similar to th
planar basis~2!, relative values of the same-pair amplitud
~same spirality for the circular basis! relate to the phases o
the excited modes, while the sums of the same-pair am
tude squared give the corresponding actions. These act
or Courant-Snyder invariants of the circular modes, can
expressed in terms of the particle coordinates (x,px ,y,py).
Canonically conjugated actionsJ6 and phasesx6 for posi-
01650
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tive and negative spirality modes are given by the same
nonical transformation as for the planar modes~4!:

a5~A2J1sinx1 ,A2J1cosx1 ,A2J2sinx2 ,

A2J2cosx2!. ~38!

Taking the amplitudes from their definition~37!, the actions
can be expressed in terms of 2D vectors of the offset
transverse momentumrW5(x,y),pW 5(px ,py):

J65grW2/41arW•pW /21bpW 2/46M /2, ~39!

whereg[(11a2)/b andM5xpy2ypx is the CAM. Note a
similarity of this expression to the corresponding formula
the planar case~5!.

The preservation of circular actionsJ6 under the invari-
ant mappings means that both their sum and difference
preserved as well:

J12J25M5const,

J11J25grW2/21arWpW 1bpW 2/25const. ~40!

Inverse expressions are found as

rW25b@J11J212AJ1J2cosc#

pW 25@~J11J2!~11a2!12AJ1J2~211a2!cosc

14AJ1J2a sinc#/b ~41!

rW•pW 52a~J11J2!22AJ1J2a cosc22AJ1J2sinc,

wherec5f11x11f21x2 . When only one of the two
circular modes is excited~eitherJ1 or J2 is zero!, then

rW25bJ, pW 25gJ, rW•pW 52aJ, M56J. ~42!

Due to the basis symplecticity, the amplitudesa can be
considered as new canonical coordinates, wherea1 is conju-
gated witha2 and a3 with a4. One more useful canonica
transformation is given by the circular bas
U(a,b,f1 ,f2) taken for some fixed values of the phas
f1 ,f2 , say,f150,f250. Let

U0~a,b![U~a,b,0,0! ~43!
3-5
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be such a fixed-phase basis; then new canonical coordin
ã[(ã1 ,ã2 ,ã3 ,ã4) can be introduced by a symplectic tran
formationU0 as

x5U0ã. ~44!

These new coordinates

ã5U0
21 x5U~a,b,0,0!21 U~a,b,f1 ,f2! ã

are nothing else but the constant amplitudes,a, rotated by the
phasesf1 ,2f2 :

S ã1

ã2
D 5S cosf1 sinf1

2sinf1 cosf1
D S a1

a2
D

5A2J1S sin~f11x1!

cos~f11x1!
D ,

S ã3

ã4
D 5S cosf2 sinf2

2sinf2 cosf2
D S a3

a4
D ~45!

5A2J2S sin~f21x2!

cos~f21x2!
D .

IV. ADAPTERS

Both planarV ~2! and circularU ~35! basic sets are sym
plectic; therefore, they can be mapped on each other. S
plectic transformations

C5U V21 and C̃5V U21 ~46!

map the planar basisV on the circular basisU, and back,
respectively. Note that the planar-to-circular transformatioC
maps the horizontal and vertical phase spaces on the m
of opposite spiralities. The initial state of a particlex ex-
panded over the planar basis asx5V•a is characterized by a
vector of the amplitudesa5(a1 ,a2 ,a3 ,a4)T. Then, the
planar-to-circular transformationC converts the initial statex
into a new one

x̃5C x5U V21 V a5U a

with the same amplitudes of expansion over the circular
sis; the same statement is true for the opposite transforma
C̃. As a consequence, the corresponding planar and circ
Courant-Snyder invariants are equal:

Jx5J1 , Jy5J2 . ~47!

Note that every invariant assumes here its own Cour
Snyder parameters:Jx,y are calculated withax,y ,bx,y of the
planar basisV ~2!, while J6 assumesa,b of the circular
basisU ~35!.

Principal ideas of the planar-to-circularC or reverseC̃
mappings were originally proposed by one of the authors
round beam schemes in circular colliders@10# and, later, for
01650
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electron cooling@11#. Optical devices realizing such transfo
mations were named asbeam adapters, which underlines
their shaping role for the beam phase portrait. Adapt
transformations are illustrated schematically by Fig. 1.

For circular colliders, round beams in the interaction
gion can significantly increase the beam-beam limit of
luminosity @8,9,20#. It can be shown that a proper adapt
transforms an incoming uncoupled beam into a rotati
invariant outgoing beam, and the rotation invariance wo
be guaranteed not only at the interaction point, but in
whole space around it, bounded by the nearest up- and do
stream quadrupoles. Indeed, homogeneous distributions
the horizontal and vertical phases for the incoming u
coupled beam turn into a homogeneous distribution over
circular phases in the outgoing beam if the planar-to-circu
mappingC5U V21 ~46! is matched with the beam, i.e., th
Courant-Snyder parametersax,y ,bx,y of the mapping are
equal to those of the beam. Thus, any matched adapter tr
forms uncoupled phase-homogeneous beams into rota
invariant beams. After the interaction region, the round be
can be turned back to a new uncoupled state by means o
reverse transformation. Note that the matched planar
circular adapterC makes outgoing beams round for any ra
of the vertical to horizontal emittances and any mach
tunes, contrary to schemes such as those proposed in Re@8#
and implemented at CESR@20#. Note also that the revolution
matrix at the interaction point makes only a transverse t
of the circular basis; this matrix is obviously rotation inva
ant.

Adapters can also be effectively used for purposes of
relativistic electron cooling, transforming a naturally flat a
hot electron beam in a cooling storage ring into a cold ell
tical or round beam inside the matched cooling solenoid@11#;
the resulting dramatical reduction of the electron tempera

FIG. 1. ~Color! Schematic illustration of the planar-to-circula
beam adapter: horizontally and vertically polarized modes are tr
formed into circular modes of opposite spiralities. Blue and red d
represent particles with smaller or larger actions. Arrows on
circular mode portraits show particle momenta, proportional to
offsets. For simplicity, all the phase portraits are depicted as circ
generally, tilted ellipses are mapped onto each other. Direction
external arrows5. specify the direction of transformation. Re
verse direction of both upper and lower arrows (,5) would cor-
respond to the reverse, circular-to-planar adapter.
3-6
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in the cooling section can be crucial for the cooling proce
Indeed, whenJy50, only a positive circular mode is excite
after mappingC, making the canonical angular momentu
~CAM! a function of the beam offset:M5r 2/b, according to
Eq. ~42!. Immersing this beam inside the solenoid with t
field

B52c/~eb! ~48!

turns the transverse motion to zero; in this matched solen
electrons travel strictly along the magnetic field, having z
Larmor radii.

A pair of matched adapters can provide a reflectionl
mappingT2 , Eq. ~27!. Indeed, if the first adapter transform
initial circular modes into planar modes, say,1⇒x,2⇒y,
the second can make these planar modes circular again
with switched spiralities,x⇒2,y⇒1; thus, eventually the
circular modes are transformed as1⇒2,2⇒1, which
means that the sign of the CAM is changed.

V. IMPLEMENTATION OF ADAPTERS

Being symplectic, the adaptive transformationsC,C̃ can be
realized. Being linear, they can be realized of quadrupo
To provide coupling, some quadrupoles must be skew.
question is ‘‘How can it be done?’’ Principle ideas were pr
posed in Refs.@10,11# and then in more detail in@13#. It was
found that particular adaptive transformations can be p
vided by a skew quadrupole triplet.

The transformationC5U V21 is constructed from given
circular and planar bases. Let the circular basisU be taken
for a waist point, wherea50, with the phasesf152f2

52p/4, while the planar basis is taken withax5ay5a0 ,
bx5by5b0 andfx5fy5f0. It is straightforward to show
that in this particular case, the adaptive transformationC re-
duces to an uncoupled transformation in a frame rotated
p/4. This can be expressed as

C5R~p/4!^M,N&R~2p/4!, ~49!

where^M,N& stands for a block-diagonal 434 matrix with
M andN as its 232 diagonal blocks:

M5SA b

b0
~cosf02a0sinf0! 2Abb0sinf0

a0cosf01sinf0

Abb0

Ab0

b
cosf0

D
~50!

and

N5S 2A b

b0
~a0cosf01sinf0! 2Abb0cosf0

cosf02a0sinf0

Abb0

2Ab0

b
sinf0

D .

~51!
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For this transformation, the phasesfx ,fy of the initial pla-
nar phase space vector and thosef1 ,f2 of the final circular
vector are related asf15fx2f02p/4,f252fy1f0
1p/4. Note that the blocksM and N look almost like the
standard Courant-Snyder form, Eq.~28!. Obviously, these 2
32 matrices are characterized by identical sets of
Courant-Snyder parameters: in terms of Eq.~28!, a1
5a0 ,a250 andb15b0 ,b25b for both of them, with the
phase advances shifted byp/2, namely mM52f0 ,mN5
2p/22f0 for M and N blocks, respectively. This relation
can also be formulated as

N5F M F5S 0 2b

1/b 0 D . ~52!

In other words, this particular adapter can be realized a
sequence of skew quadrupoles, with the condition~52! be-
tween the horizontal and vertical matrices in the natural~un-
rotated! frame of the quadrupoles. This condition on the u
modular 232 matrices is equivalent to 2322153
independent conditions on their elements; thus a skew tri
of quadrupoles with variable gradients can do the job. If
circular b parameter is not fixed, only 2 conditions rema
so 2 variable quadrupoles are sufficient.

It becomes clearer now how an adapting transformatioC
can be realized for arbitrary given planarax,y ,bx,y and cir-
culara,b Courant-Snyder parameters. First of all, the init
planar basis can be mapped onto another planar basis
identical Courant-Snyder parameters,ax5ay ,bx5by ,
which could be done by means of 2 quadrupoles with va
able field gradients. Then, the described specific adapter
be applied to this second basis, mapping it onto an unsp
fied circular basis, which would require 2 more quadrupol
Finally, a transformation of this unspecified circular ba
onto the given circular basis can be provided by 2 quad
poles upstream from the specific adapter. Thus, 2121256
quadrupoles with variable strength can provide the mapp
of a given uncoupled beam state onto a given circular st

For some purposes, it could be useful to have a nonro
laminar vortex state. This goal can be reached by apply
the planar-to-circular adapter~49! to an initially flat beam
where Courant-Snyder parameters differ from the planar
rameters of the adapter. In this case, the outgoing be
would have a cross section as a tilted ellipse, where the
and aspect ratio would depend on the beam and adapte
rameters.

An experimental study of the magnetized-to-flat transf
mations is currently being done in Fermilab@16,17#. One of
the optical schemes used in these experiments is show
Fig. 2, where the two half-axes and the tilt angle of the be
ellipse are presented along the beam line. The simulat
are done with the OptiM code@5#. A finite value of the
smaller half-axis at the exit is determined by the beam te
perature at the cathode.

VI. CIRCULAR EIGENMODES FOR A SOLENOID

The circular modes described in Sec. III present an
equate basis for any rotation-invariant transformations. T
3-7
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choice of the initial Courant-Snyder parameters can be m
taking into account the properties of the incoming beam
some ideas related to the convenience or physical sens
the description. In some cases, this choice can be mad
the optics itself. In this section, specific circular modes fo
solenoid are discussed. Inside an extended solenoid,
modes can be defined in such a way that, while the be
travels along the field, their Courant-Snyder parameters
main constant, and only the phases run. Being rotat
invariant, solenoidal transformationTs from the entrance to
an arbitrary coordinatez inside the solenoid can be present
as Eq.~25!:

Ts5R~2us/2! ^Ts ,Ts& ~53!

with

Ts5S cos~us/2! bssin~us/2!

2bs
21sin~us/2! cos~us/2!

D . ~54!

Here us5eBz/(p0c)[z/r is the cyclotron phase advanc
inside the fieldB for a particle with the longitudinal momen
tum p0. The parameter

bs52c/~eB! ~55!

can be referred to as the Larmorb function. From here, it
follows that the Courant-Snyder parameters of the circu
basis withb5bs and a50 are preserved inside the sol
noid: the first pair of the basis vectors turns by an an
Df15us/21us/25us and the second pair byDf25
2us/21us/250, i.e., remains unturned.

It is straightforward to see that the canonical variableã
~44! associated with these circular modes describe the kin
momenta

FIG. 2. ~Color! Beam ellipse half-axes and tilt angle along a p
of the beam line. The beam energy is 16.5 MeV, and the 10.2
length skew quads are230.4, 52.6, and254.9 G/cm of the field
gradient. At the cathode, the beam of 0.8 mm radius and 4
temperature is immersed in the solenoidal field of 750 G.
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ky5py1x/bs , kx5px2y/bs ~56!

and coordinates of the Larmor center

dx5x/22bspy/2, dy5y/21bspx/2; ~57!

namely,

S ã1

ã2
D 5Abs

2 S ky

kx
D ,

~58!

S ã3

ã4
D 52A 2

bs
S dx

dy
D .

These special canonical coordinates in the solenoidal fi
were proposed in Ref.@21#; they are considered in Ref.@6# in
more detail as cyclotron and drift canonical variables.

Let the planar-to-circular adaptive transformationC be
matched with an adjacent downstream solenoid, i.e.,a
50,b5bs . In this case, the horizontal degree of freedom
the incoming uncoupled beam transforms into the cyclot
mode inside the solenoid, while the vertical one transfor
into the drift mode. Due to symplecticity, the correspondi
emittances are equal:

«x
2[^x2&^px

2&2^xpx&
25«c

2[^ã1
2&^ã2

2&2^ã1ã2&
2

5~4/b2!~^kx
2&^ky

2&2^kxky&
2!,

~59!
«y

2[^y2&^py
2&2^ypy&

25«d
2[^ã3

2&^ã4
2&2^ã3ã4&

2

5~b2/4!~^dx
2&^dy

2&2^dxdy&
2!,

with the bracketŝ•••& standing for an ensemble averagin
For a particular case of the round beam inside the solen
when^dx

2&5^dy
2&[d2, ^dxdy&50 and similar momentum re

lations, it yields

«x5bk2/2, «y52d2/b. ~60!

Note that the solenoid with an opposite field switches m
ping: the horizontal degree of freedom is mapped onto
drift mode and the vertical plane is mapped onto the cyc
tron mode.

Similar relations take place for the reverse, circular-
planar transformationsC̃.

VII. LOCAL ROTATION INVARIANCE

In a case when the rotation invariance is local~continu-
ous!, the circular Courant-Snyder parameters and phases
isfy certain differential equations, similar to the uncoupl
case. The derivatives of theb function and phases can b
found similar to that in Ref.@5#. For any circular basis vec
tor, the slopex8(s)5dx(s)/ds can be expressed by means
the kinetic momentum:x85kx /p05(px2y/bs)/p0, with a
consequent substitution of the canonical momentumpx and
the coordinatey in terms of the Courant-Snyder paramete

t
m

V
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of this basis vector. On the other hand, the slope can
found by a direct derivation of the offsetx(s) expressed
through theb function and phase. Equating these two e
pressions for the same value leads to the following relati
for the circular modes:

db

ds
52

2a

p0
,

df6

ds
5

1

p0
S 1

b
6

1

bs
D . ~61!

A size of an axisymmetric laminar beamr m(s) satisfies
the envelope equation@see e.g.@37#, Eq. ~4.79!#:

r m9 1
g08r m8

b0
2g0

1
g09r m

2b0
2g0

1
r m

bs
2p0

2 2
Mm

2

p0
2

1

r m
3 2

K

r m
50. ~62!

Here b0 and g0 are the relativistic factors,p05mcb0g0 is
the total ~longitudinal! momentum,Mm is the CAM of the
boundary particle with the offsetr m andK52Ie/mc3b0

3g0
3 is

the so-called generalized perveance, which takes into
count the space charge. The term}g08 gives the adiabatic
damping during acceleration, and the term}g09 relates to the
electrostatic focusing. The envelope equation gives a sim
way to obtain the second-order equation for the circulab
function. Indeed, the laminar beam is a beam where only
of the two circular modes is excited; thus, according to E
~42!, r m5AbuMmu, which leads to an equation for the circu
lar b function:

b92
b82

2b
1

~g08b!8

b0
2g0

1
2b

p0
2 S 1

bs
2 2

1

b2D 2
2K

uMmu
50. ~63!

VIII. DIAGONALIZATION OF BEAM MATRIX

Beam distributions are conventionally described by me
of the so-calledS matrix, or the matrix of second moment
S[^x^ x&, with the sign^ standing for the outer produc
and x for the 4D phase-space vector~1!; in other words,
Si , j5^xixj& ~see, e.g., Ref.@2#, p. 56!. If M is an arbitrary
434 transfer matrix, then the resulting newS matrix is
determined byMSM T. Unimodular transformations pre
serve a determinant of theS matrix. This relates to all the
symplectic transformations, but not only: a transfer from
kinetic to the canonical momenta is not symplectic, but
determinant is also a unit; thus theS-matrix determinant is
the same in the kinetic and canonical bases. The square
of this determinant is the beam emittance in the 4D ph
space. The uncoupled state is described by the blo
diagonalS matrix in the original Cartesian coordinates~1!;
its 4D emittance is a product of the 2D emittances. Norma
the phase distributions are homogeneous in this case thS
matrix is diagonal in the matched planar basis~the transfer
matrix in this caseM5V21)

S5diag~«x ,«x ,«y ,«y!, ~64!

where diag(•••) is a diagonal matrix with elements listed a
the arguments. Suppose this uncoupled beam is transfor
into a round beam by the planar-circular adapter. In
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matched circular basis, this new vortex state has the s
diagonal beam matrix~64!. However, this vortex state repre
sents an arbitrary round beam; thus, it can be concluded
the S matrix of any round beam distribution is diagonalize
in a proper circular basis. Assuming that the matrix of
round beam is given in the original Cartesian coordinatesx,
its two pairs of circular eigenvectors and two canonical em
tances can be found; this is a problem treated in this sect

First of all, the S matrix of a round beam can be ex
pressed in rotation-invariant terms. Substitution of

x5r cosu,y5r sinu,

px5pncosu2ptsinu,
~65!

py5pnsinu1ptcosu,

px
21py

25pn
21pt

2[p2

and averaging over the angleu leads to the following 232
block form of the 434 S matrix:

S5
1

2 S S ^rpt&J

2^rpt&J S
D ,

~66!

S5S ^r 2& ^rpn&

^rpn& ^p2&
D .

Here, the 232 matrix J is determined in Eq.~13!; the nor-
mal and tangential canonical momentapn ,pt are indepen-
dent of the angleu due to the beam symmetry.

It is straightforward to check that this beam matrix
diagonalized by the circular basis~35! with

b5
^r 2&

A^r 2&^p2&2^rpn&
2

,

~67!

a52
^rpn&

A^r 2&^p2&2^rpn&
2

,

and arbitrary phasesf1 ,f2 . In this basis, the beam matri
~66! is presented as

S5diag~«1 ,«1 ,«2 ,«2! ~68!

with the emittances

2«1,256^rpt&1A^r 2&^p2&2^rpn&
2>0. ~69!

Note that these partial emittances are preserved by any s
plectic transformation: when the beam matrix for a new st
is diagonalized, it will have the same form as Eq.~68! with
the same eigenvalues«1,2 as the initial state.

The total 4D emittance is a product of these partial em
tances:

4e[4«1«25^r 2&^pn
2&1^r 2&^pt

2&2^rpn&
22^rpt&

2.
~70!
3-9
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All these results can be expressed in terms of the kin
momentakx,y , related to canonical ones by Eqs.~56!. In
terms of the normal and tangential components, this can
presented as

pn5kn , pt5kt2r /bs , ~71!

which leads to

2«1,256~^rkt&2^r 2&/bs!

1A^r 2&^k2&2^rkn&
222^r 2&^rkt&/bs1^r 2&2/bs

2

~72!

and

4e5^r 2&^kn
2&1^r 2&^kt

2&2^rkn&
22^rkt&

2; ~73!

the last result was previously found in Ref.@22#. Note that
presentations of the 4D emittance in terms of the canon
and kinetic momenta are absolutely identical: a transfer fr
one to another is equivalent to rotation imposed on the be
as a whole, which does not change the total emittance~70!.

The basis which makes the beam matrix diagonal can
considered as eigenvectors of the given beam distribut
while the partial emittances can be seen as eigenvalues.
deduced circular eigenvectors for a round beam give a s
tion to a problem of its transformation into an uncoupl
beam, when theS matrix of the round beam is known. In
deed, a circular-to-planar adapter with the circular para
eters~67! would complete this job.

As an example, a beam born at the magnetized cath
can be considered. At the round cathode,^r 2&[2sc

2 , ^k2&
[2mTc , ^rkn&5^rkt&50, wheresc is its rms size andTc is
the temperature; for a homogeneous circle of radiusac , the
rms sizesc5ac/2. The circular Courant-Snyder paramete
for the eigenvectors~67! come out as

a50, 1/b251/bs
21kT

2/sc
2 , ~74!

and the emittances@5#

«1,25~sc
2/bs!A11bs

2kT
2/sc

271),

e[«1«25sc
2mTc . ~75!

If the beam is strongly magnetized,bs!sckT , then

«15bskT
2/2, «252sc

2/bs . ~76!

A problem of eigenvectors for arbitrary~nonround,
coupled! beam distribution has been recently solved by Le
edev and Bogacz@5#. It has been found that the beam matr
can be diagonalized, and the two emittances«1,2 are given by
the positive roots of a characteristic equation for«:

det@S212~ i /«!S#50,

wherei 5A21.
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IX. POSSIBLE APPLICATIONS

In this section, a possible use of the circular mode form
ism and beam adapters is discussed.

A. Round beams for circular colliders

For circular colliders, it should be beneficial to hav
round beams in the interaction point~IP!; a list of references
can be found in Ref.@9#. The main reason is that the rotatio
symmetry of a kick from the round opposite beam accom
nied by the revolution matrix invariance leads to angu
momentum preservation. This makes the transverse mo
equivalent to one dimension. Resulting elimination of t
betatron resonances is of crucial importance since they
believed to cause the beam lifetime degradation. Optical
alization of the round colliding beams has been propose
Ref. @8#, and a similar scheme has been implemented
CESR@20#. For all these cases, the identity of the horizon
and vertical emittances and tunes is required. Another
proach to get the beams round, the Mo¨bius accelerator@23#,
based on beam rotator optics@24#, is studied experimentally
at CESR@25#. This scheme also leads to emittance ident
and effective tune degeneration: the resulting normal tu
are inevitably separated by 1/2. Use of the matched ada
at the IP opens a way that is free from all these limitatio
The matched planar-to-circular and reverse adapters m
the beams round only in the space between these adap
This ‘‘beam rounder’’ does not change the uncoupled b
functions and emittances in the outer part of the storage r
which would allow us to use it as a transparent insert
existing circular colliders. Generally speaking, inserting t
device would change the tunes, which can be restored
another local insert. The adapter is absolutely indifferen
such global parameters as tunes. Two tunes of the sto
ring with the local beam rounder are independent variab
both available for the working point optimization. The co
liding beams are round for any emittance ratio, and the re
lution matrix for any point between the two adapters is ro
tion invariant. All this guarantees the angular momentu
preservation at the beam-beam collisions. Note that
beams would be round not only in the IP itself, but at t
whole interval including IP and bounded by the nearest
stream and downstream quadrupoles. A solenoidal magn
field in the interaction region is not important for the CAM
preservation; thus the adapter can be used either with
without the solenoid inside.

B. Flat electron beams for linear colliders

The magnetized-to-flat transformation was suggested
be used for preparation of flat electron beams for linear c
liders @14#, as an alternative to flat beams obtained in dam
ing rings. This method also allows us to form electron bea
with optimum density distribution in the beam plane to o
tain maximum luminosity of a collider. The magnetized-t
flat transformation maps the cathode shape onto, say, a
zontal phase space of the outgoing flat beam. Changing
cathode shape, the surface density distribution of the
beam can be arbitrarily modified, so any distribution functi
3-10
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can be prepared. This optimization would be different for
e2e1 collider ande2e2 collider,since the positron beam
shaped in a damping ring.

The magnetized-to-flat transformation was also sugge
to be used for production of Smith-Purcell radiation@26# and
intense femtosecond x-ray pulses@27#.

C. Relativistic electron cooling

Several beam optics advancements can play a critical
in the development of the relativistic electron coolin
projects for hadron beams@6,12,28#.

At Fermilab, a project is being developed for electr
cooling of antiprotons in the Recycler storage ring
8.9 GeV/c @29#. To provide beam focusing, the cooling se
tion has to be immersed in the solenoidal field. To av
beam excitation in the cooling section, the cathode, wh
the beam is born, has to be properly magnetized, provid
the same magnetic flux through the beam as in the coo
section. It is important that all the rest of the transport line
free of extended solenoids@6#. At DESY, a possibility is
studied for an RF linac-based electron cooling of 20 G
protons in PETRA@30#. For both of these projects, the ele
tron beam is CAM-dominated; similar optical problems ha
to be solved and the same methods can be used.

For high-energy electron cooling, with the energy p
nucleon>100 GeV, the electron beam can be circulating
a storage ring. The effects of intrabeam scattering for
beam are minimized, if it is flat for the greater part of t
ring, as it is naturally for an uncoupled lattice. A calm a
round beam in the magnetized cooling section can be
vided by means of the adapting optics. Schemes of this k
were proposed for Tevatron@32# and RHIC@31# at full en-
ergy.

Recent successes in the realization of the energy reco
principle in superconducting electron linacs@33# opens a
very promising perspective of linac-based high energy e
tron cooling. Currently, there are two proposals of this ty
under development: cooling of heavy ion and proton bea
in RHIC @34#, and ion cooling in an electron-ion collide
@35#; both are based on principles of electron beam trans
with a discontinuous solenoid@6#. In view of a high value of
electron ~average! current required for efficient electro
cooling, the incorporation of an electron recirculator ri
with the electron linac seems to be an important advan
ment for future electron cooling devices@36#. Today, this
possibility is realized conceptually as a ring with circul
modes matched with a solenoid of the cooling sect
@12,28,38#. In order to extend the lifetime of a high qualit
beam against intrabeam scattering and~or! quantum radia-
tion, the ring lattice can be complemented by adapters
keep the beam flat in arcs~similar to the above-mentione
electron storage ring case, although the wigglers are
needed here!.

There is an interesting possibility to compensate the o
cal coupling, introduced by the cooling solenoid to the ha
ron beam. It can be done by changing the sign of the elec
CAM in the middle of the cooling section, where the so
noid is disrupted for a special short part of the trajectory,
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discussed in Sec. IV. Assuming this CAM flip is provide
the beam enters the second solenoid, where the mag
field is reversed, so the beam remains calm there as well
the first solenoid. This CAM-flip transformation can be pr
vided by two adapters: the first one transforms the CA
dominated beam into a flat beam, and the second transfo
this flat beam into a whirled beam again with an oppos
sign of the CAM. As a result of this trick, an average val
of the magnetic field in the cooling section is eliminate
which can be beneficial for the cooled particles. This CA
flip requires 5 quadrupoles: adjacent quadrupoles of
skew triplets can be merged.

The transport of the magnetized electron beam from
electron sources to the cooling section at high energ
would also make efficient the electron cooling of high ener
positron beams@28#. Due to small positron mass and ma
netization, this process is very intense@39,40#; employing
sweeping and rate-redistribution dispersive techniq
@12,41# could additionally intensify it. The circulating posi
tron beam can be cooled down by a linear electron beam
the emittance of a much lower value than that of the elect
beam, obtained from a magnetized source. Finally,
cooled positron beams can be used, in their turn, for a
and deep cooling of circulating electron beams.

D. Low energy hadron cooler rings with circular modes

The equilibrium emittances of a beam under cooling c
be limited by Coulomb repulsion when cooling intense lo
energy beams. The above-mentioned concept of round be
in a recirculator ring with circular modes matched with
solenoid of the cooling section prompts a possible way
reduce the space charge effect on the 4D phase space
tance@12#. The principal optical feature of such a ring is th
the drift and cyclotron components of the hadron parti
motion in the solenoid are not mixed by the outside opti
channel. Then, the cyclotron component~related to the had-
ron beam temperature in the solenoid! will experience a deep
cooling, not limited by the space charge. The drift comp
nent~i.e., beam size! can be cooled to an equilibrium limite
by the space charge, using the dispersive cooling.

E. Ionization cooling

A central problem for muon colliders and neutrino fact
ries is the effective ionization cooling of muons. When t
muons are transported inside an extended solenoid, only
cyclotron mode, related to the Larmor rotation, can
cooled, while the drift emittance, related to positions of t
Larmor centers, is preserved. To make the cooling proc
comprehensive, a transport scheme with an alternating
of the magnetic field was proposed. An optimized sche
based on the use of long solenoids was suggested in
@42#. The central idea of this proposal is a cross mapping
the drift and cyclotron modes for the sequential reversed
lenoids. Due to the rotation invariance of this symplec
transformation, it could be done by round lenses~short sole-
noids! or invariant blocks@6#. The canonical angular mo
mentum is preserved by these optics, while cooling ma
the CAM value systematically decrease.
3-11
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F. Electron and ion beams for applied use

High quality relativistic electron beams obtained fro
magnetized sources can be used for the effective gener
of hard radiation, coherent or incoherent. The electron be
in the generation section can be returned~reinjected! into a
solenoid~a strong one!, to eliminate beam rotation. Option
ally, the beam can be turned to the flat one, to obtain m
mum electron concentration, if necessary. The flat elec
and ion beams also might be of interest for technolog
applications. Flat ion beams with low 4D emittance can
obtained by means of electron cooling in ion rings with c
cular modes, as described in Sec. IX D. After cooling
round ion beam can be transformed into a flat one by usin
beam adapter in the regime of circulation or after eject
from the ring. Optionally, if the use of a very cold ion bea
would be compatible with the magnetic field, the beam c
be reinjected into the solenoid of the user section, keepin
in a tranquil round state.

X. SUMMARY

In the optics of charged particle beams, circular transve
modes can be introduced; they might be considered as an
gous to the circular modes in the optics of light. These mo
provide an adequate basis when the transformations are
tation invariant. A group of the invariant transformations
shown to be identical to a group of transformations prese
ing the canonical angular momentum; its matrices are
scribed. The rotation-invariant mappings and circular mo
can be parametrized in a way which makes them simila
d
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the Courant-Snyder parametrization in the conventional
coupled case. The constructed symplectic basis of circ
modes make almost obvious an idea of the beam adap
which are optical transformers of the planar to circu
modes and back. The adapters can be implemented on a
of a skew quadrupole block; mapping of a given planar ba
onto a given circular basis requires six quadrupoles w
variable field gradients. Inside a solenoid, there is a part
lar choice for the circular modes, when one of them d
scribes the cyclotron rotation and another describes coo
nates of the Larmor center. In the case of a beam born a
magnetized cathode, another special choice of the circ
modes allows us to present a matrix of the beam sec
moments~the so-calledS matrix! in a diagonal form. A
proper downstream adapter can transform this beam into
uncoupled, or anX2Y-uncorrelated state, in which horizon
tal and vertical emittances are equal to the correspond
circular emittances of the beam at the cathode. Such tr
formations can be used for flat beams preparation in lin
colliders. Beam adapters can also be used for preparatio
round beams in the interaction region of the circular coll
ers. Requiring only local matching and being insensible
the machine tunes, the beam adapters can be added wi
any change to the main part of the lattice. Providing rou
beams and a rotation-invariant revolution matrix, such
serts guarantee the angular momentum preservation, whi
believed to be crucial for a significant increase of luminos
Relativistic electron cooling of heavy particles and ionizati
cooling of muons present other fields of research where
of the circular modes can be quite relevant.
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